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Abstract: Ultrasound (US)-guided diffuse optical tomography (DOT) is a promising low-cost
imaging technique for diagnosis and assessment of breast cancer. US-guided DOT is best
implemented in reflection geometry, which can be co-registered with US pulse-echo imaging and
also minimizes the tissue depth for adequate light penetration. However, due to intense light
scattering, the DOT reconstruction problem is ill-posed. In this communication, we describe a
new non-linear Born iterative reconstruction method with US-guided depth-dependent `1 sparse
regularization for improving DOT reconstruction by incorporating a priori lesion depth and
shape information from the co-registered US image. Our method iteratively solves the inverse
problem by updating the photon-density wave using the finite difference method, computing the
weight matrix based on Born approximation, and reconstructing the absorption map using the
fast iterative shrinkage-thresholding optimization algorithm (FISTA). We validate our method
using both phantom and patient data and compare the results with those using the first order
linear Born method. Phantom experiments demonstrate that the non-linear Born method provides
more accurate target absorption reconstruction and better resolution than the linear Born method.
Clinical studies on 20 patients show that non-linear Born reconstructs more realistic tumor shapes
than linear Born, and improves the malignant-to-benign lesion contrast ratio from 2.73 to 3.07,
which is a 12.5% improvement. For lesions approximately more than 2.0 cm in diameter, the
average malignant-to-benign lesion contrast ratio is increased from 2.68 to 3.31, which is a 23.5%
improvement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Diffuse optical tomography (DOT) is a low-cost, non-invasive functional imaging modality
that utilizes near-infrared (NIR) light to image biological tissue. In DOT imaging, tissue is
illuminated with diffused light, and the reflected or transmitted light is measured at the tissue
surface. The tissue’s optical properties are then estimated with image reconstruction algorithms.
In the past decades, DOT has been actively studied for diagnosis of breast cancer and assessment
of treatment response. Clinical studies have demonstrated that the hemoglobin (Hb) concentration
(oxy-Hb, deoxy-Hb, and total Hb) calculated from DOT reconstructed absorption images is
directly related to breast tumor angiogenesis, and it can be used to differentiate cancers from
benign lesions as well as to assess breast cancer treatment response [1–5].
However, due to the intense light scattering in breast tissue, lesion localization is quite

challenging; therefore, multimodality imaging systems have been developed to assist in
reconstructing more informative DOT images [6–10]. Recently, ultrasound-guided DOT has
emerged as a promising low-cost adjunct technique to ultrasound (US) for the diagnosis of
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breast cancers and assessment of breast cancer neoadjuvant chemotherapy response, where a
priori lesion location information provided by coregistered US images is used to assist DOT
reconstruction [4, 11–13]. US-guided DOT is best implemented in reflection geometry, which is
compatible with conventional US pulse-echo imaging. Additionally, the light propagation depth
is reduced to several centimeters when the patient is in a supine position, favoring reflection
mode imaging.
In breast DOT reconstruction, linear Born approximation is widely used to compute the

weight matrix for modeling the forward problem. With background optical properties estimated
from the contralateral breast or a homogeneous medium, the weight matrix can be computed
analytically and optimization methods can be used to search for the lesion absorption distribution
iteratively [14, 15]. Unfortunately, linear Born approximation tends to underestimate the
absorption coefficients when the lesion is large and highly absorbing. To solve this problem, Yao
et al. proposed an Born iterative method for more accurate photon-density wave estimation [16].
They showed, through simulation, that the non-linear Born iterative method could achieve more
accurate absorption reconstruction results in cases where first order linear Born failed.
Sparse regularization is a newer approach for improving DOT reconstruction accuracy and

robustness. Because of the intense light scattering, the DOT image reconstruction problem
is usually ill-posed [14]. In the past, Correia et al. developed a DOT algorithm based on
edge-preserving total variation (TV) regularization [17]. Lee et al. proposed forming the imaging
problem as a joint sparsity recovery problem [18]. In recent years, `1 regularization has gained
popularity in solving image reconstruction problems. It has been shown, both analytically and
experimentally, that incorporating a priori structure information using `1 regularization can
reconstruct high quality images, even when insufficient measurements are provided [19, 20].
In this article, we present a new depth-dependent `1 regularized non-linear Born iterative

reconstruction method for US-guided DOT. Our approach iteratively updates the photon-
density wave using a finite difference method and computes the weight matrix based on Born
approximation. We validate our method using phantom and patient data and compare the results
with those obtained using the first order linear Born method. Phantom experiments demonstrate
that the proposed method reconstructs the absorption distribution more accurately than linear
Born. Clinical studies of 20 patients have shown that our method provides more realistic tumor
shapes than linear Born, and improves the average malignant-to-benign lesion contrast ratio from
2.73 to 3.07, which is a 12.5% improvement. For lesions approximately more than 2.0 cm in
diameter, the average malignant-to-benign lesion contrast ratio is increased from 2.68 to 3.31,
which is a 23.5% improvement.

2. Theory and methods

In the following subsections, we discuss how to solve each individual sub-problem and combine
them together. In Section 2.1, we review how to model light propagation inside breast tissue.
In Section 2.2, we explain how to formulate and solve the inverse problem. In Section 2.3, we
discuss how to use the estimated optical properties to correct the photon-density wave estimation.
In Section 2.4 and 2.5, we describe how the experimental phantom and patient data were acquired
using our DOT system. Finally, Section 2.6 summarizes the steps of the proposed algorithm for
DOT reconstruction.

2.1. Dual-grid Born approximation

NIR photon migration in breast tissue can be modeled by the frequency-domain diffusion equation
of the photon-density wave [21]. Assuming optical properties change smoothly inside the breast
tissue, we can approximate the frequency-domain diffusion equation as a Holmholtz equation [22],

∇2U(r) + k2(r)U(r) = −S(r), (1)
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where U(r) is the photon-density wave and S(r) is the source distribution normalized by the
diffusion coefficient. The wavenumber is given as

k(r) =
√( iω

v
− µa(r)

)
/D(r), (2)

where µa(r) and D(r) = 1/
[
3
(
µa(r) + µ′s(r)

) ]
are the absorption and diffusion coefficient

distributions, respectively. Further, µ′s(r) is the reduced scattering coefficient distribution, v
is the speed of light in tissue, and ω is the modulation frequency of the photon-density wave.
Let U(r, rs) = U0(r, rs) +USC(r, rs), where U0(r, rs) represents the photon-density wave in a
homogeneous medium with constant background optical properties µa0 and µ′s0, and USC(r, rs)
represents the perturbed photon-density wave due to heterogeneities. USC(r, rs) can be written
in an integral form as [22]

USC(r, rs) =
∫

U(r, rs)O(r′)G(r − r′)dr′, (3)

in which G(·) is the Green’s function satisfying the extrapolated boundary condition [23].
Since there are no analytical solutions for the photon-density wave distribution U(r, rs) in
an inhomogeneous medium, we choose to approximate it with a numerical method, which
will be discussed in Section 2.3. We further assume the reduced scattering coefficient varies
slowly inside the human breast, and is significantly higher than the absorption coefficient;
hence we can approximate the diffusion coefficient distribution with the diffusion constant
D(r) ≈ D0 = 1/

(
3
(
µa0(r) + µ′s0(r)

) )
[24]. Moreover, k0 and O(r) can be written as

k0 =

√
( iω
v
− µa0)/D0 , O(r) = −δµa(r)

D0
. (4)

In US-guided DOT reconstruction, to improving the ill-posed inverse problem, we have used a
dual grid schedule, discretizing the lesion volume with a fine grid and the background bolume
with a coarse grid. Thus, the integration in Eq. (3) can be formulated in matrix form as

y =Wx + ε, (5)

where W ∈ CM×N =
[
WL,WB

]
, x ∈ RN =

[
xL; xB

]
, y ∈ CM is the measurement, and ε is

the measurement noise. [· , ·] and [· ; ·] are the horizontal and vertical matrix concatenations,
respectively. Also, and xL ∈ RNL and xB ∈ RNB are vectors representing the absorption
coefficient distributions of the lesion and the background volume, respectively. Further,

WL =
[
− 1

D0
G(rv j, rdi)U(rv j, rsi)

]
M×NL

(6)

and
WB =

[
− 1

D0
G(rv j, rdi)U(rv j, rsi)

]
M×NB

(7)

are weight matrices for the lesion and the background volume, respectively.

2.2. Gradient-based reconstruction

With the definition of W, x, and y above, we formulate the inverse problem as

x̂ = argmin
x∈RN

{1
2
‖y −Wx‖22 + ‖diag(λ)x‖1}, (8)

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2530 



Algorithm 1 Sparsely regularized DOT reconstruction
1: input: initial guess x̂0 = 0, weight matrix W, step size τ, regularization parameters λ
2: set: s0 ← x̂0, q0 ← 1
3: for t = 1, 2, . . . do
4: zt ← st−1 − τ∇D(st−1) . (9)
5: x̂t ←proxR(zt, τλ) . (11)
6: qt ← 1

2 (1 +
√

1 + 4q2
t−1)

7: st ← x̂t + ((qt−1 − 1)/qt )(x̂t − x̂t−1)
8: t ← t + 1
9: end for

10: return: x̂t

where y ∈ CM is the measurement, x ∈ RN is the absorption distribution, and λ ∈ RM is a vector
of depth-dependent non-negative regularization parameters determined from the lesion height
information given by the co-registered ultrasound image. The first term, D(x) = 1

2 ‖y −Wx‖22 ,
measures the data fidelity of the forward model, while the `1-term, R(x) = ‖diag(λ)x‖1, promotes
the sparsity level of the reconstructed images. Each element of the vector λ is empirically chosen
as 0.01

d2
i

, where di is the width of the tumor at the depth of the ith reconstruction slice, measured in
centimeters from the co-registered US image. The optimization problem described in Eq. (8) is
solved with the fast iterative shrinkage-thresholding algorithm (FISTA) [25]. FISTA is a widely
used proximal gradient method with Nesterov’s acceleration [26]. The proximal gradient method
solves the optimization problem with a gradient step followed by a proximal step. We choose to
use FISTA because it is relatively economical to compute and gives the fastest convergence rate
among first order optimization methods [26].
The reconstruction method of the inverse problem is encapsulated in Algorithm 1. We use a

zero initialization for the absorption coefficient distribution x. The intermediate variables s and q
are also initialized accordingly, as described in step 2. We then go through the iteration. The
gradient of D(x) in step 4 can be calculated as

∂

∂x
D(x) =WH (

Wx − y
)
, (9)

and τ is the step size for the proximal gradient method, where WH is the Hermitian adjoint of W.
For the experiments reported in this article, we use τ = 1/norm(WHW). In step 5, after updating
the intermediate variable zt , we constrain x̂t using the proximal operator associated with the
convex regularization term R(x), defined as

proxR(x) = argmin
z∈RN

{R(x) + 1
2
‖x − z‖22 }, (10)

This proximal operator can be efficiently calculated with the soft threshold function Sγ(z), defined
as [25]

Sγ(z) = sgn(z) � max (0, |z| − γ), (11)

where � is the element-wise multiplication operator and γ = τλ. Here, sgn(·) is the sign function
that extracts the sign of a real number, and |·| calculates the absolute value of each element in z.
We then update the intermediate variables st and qt , following the procedures listed as step 6 and
step 7, which help accelerate the convergence rate [26].
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2.3. Finite difference photon-density wave estimation

The photon-density wave required for formulating the Born weighting matrices in Eq. (3) can be
estimated with the finite difference method [16, 27]. If we use Cartesian coordinates to discretize
the volume and approximate the differential operations with Frechet derivatives, Eq. (1) can be
numerically written as

Ui+1, j,k +Ui−1, j,k

∆x2 +
Ui, j+1,k +Ui, j−1,k

∆y2 +
Ui, j,k+1 +Ui, j,k−1

∆z2

−( 2
∆x2 +

2
∆y2 +

2
∆z2 − k2

i, j,k)Ui, j,k = −Si, j,k,
(12)

where i, j, and k are indices along the x, y, and z directions; Ui, j,k is the discrete sample of the
photon-density wave U(r) at the < i, j, k > position; and Si, j,k is the source distribution. By
defining u and s as vector representations of the distributions of photon-density wave U and the
source s, respectively, Eq. (12) can be implemented as a linear operation on the photon-density
wave u,

Lu = s , (13)

where L is the system matrix, which depends on the optical property distribution of the medium.
We can calculate the initial photon-density wave distribution with estimated background optical
properties from the contralateral breast, using a fitting method described by Zhou et. al. [28]
in detail. After constructing the matrix L based on the estimated absorption distribution, we
update the photon-density wave distribution using the conjugate gradient method. Because the
absorption coefficients in the coarse-grid region are very close to the background, we update the
photon-density wave only inside the fine-grid area mentioned earlier in Section 2.1.

2.4. Data acquisition

To perform imaging experiments, we use the US-guided DOT system described in [29], which
consists of a NIR imaging system and a commercial US system. Four laser diodes at wavelengths
of 740, 780, 808, and 830 nm are used to generate NIR light modulated at a 140 MHz carrier
frequency. The light is thenmultiplexed to nine positions and delivered to the medium sequentially.
Fourteen parallel photo-multiplier detector (PMT) tubes detect the reflected light from themedium.
A custom-made A/D board digitizes the fourteen-channel data.

2.5. Experimental procedures

Phantom experiments and patient studies were conducted to evaluate the performance of the
proposed algorithm. We used phantom experiments to validate both the accuracy and resolution
of the proposed method. We first submerged phantom targets having different optical contrasts in
an intralipid solution. The high contrast target was made of material with µa = 0.23 cm−1 and
µ′s = 7 cm−1, while for the low contrast target material, µa = 0.11 cm−1 and µ′s = 7.5 cm−1. We
submerged three spherical targets with diameters of 1, 2, and 3 cm at depths of 0.5, 1.0, 1.5, and
2.0 cm. Note that these depths were measured at the surface of the target using co-registered
US images. The intralipid solution had an absorption coefficient µa0 = 0.02 − 0.03 cm−1and a
reduced scattering coefficient µ′s0 = 7 − 8 cm−1, which were acquired by fitting [28].

Then we explored the resolution of the proposed algorithm by submerging two 1.0 cm diameter
high contrast (µa = 0.23 cm−1) spherical targets inside the intralipid solution at 1.5 cm depth.
The two balls were both placed in the center region along the US B-scan direction. Finally,
we tested the performance of the proposed algorithm using data from 20 patients, of which 10
patients had malignant lesions, and 10 patients had benign lesions, based on biopsy results. The
study was approved by the local Institutional Review Board (IRB) and was compliant with the
Health Insurance Portability and Accountability Act (HIPPA). Informed consent was given by
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Given: 𝑘𝑘0(𝒓𝒓),𝑢𝑢0(𝒓𝒓),𝑢𝑢𝑠𝑠𝑠𝑠(𝒓𝒓)

Initialize:

𝑘𝑘(𝒓𝒓) ← 𝑘𝑘0(𝒓𝒓),𝑢𝑢(𝒓𝒓) ← 𝑢𝑢0(𝒓𝒓)

Weight update:

𝑢𝑢(𝒓𝒓) → 𝐖𝐖𝑖𝑖,𝑗𝑗

Optical property update:

𝐖𝐖𝑖𝑖,𝑗𝑗 , u𝑠𝑠𝑠𝑠 𝐫𝐫 → 𝑂𝑂 𝒓𝒓
→ 𝑘𝑘 𝒓𝒓 ,𝑢𝑢(𝒓𝒓)

①

⓪

②

③

Fig. 1. Flowchart of the proposed algorithm as summarized in Section 2.6

every patient, and the data used in this study have been de-identified. We imaged both the lesion
and the normal contralateral breast with our US-guided DOT system. Measurements from the
contralateral normal breast were used to estimate the average background optical properties of
the breast [30].

2.6. Summary of the proposed algorithm

In summary, the proposed algorithm combines depth-dependent sparse regularization with a
non-linear Born iterative method. First, we reconstruct the lesion absorption by solving the
inverse problem using FISTA. The strength of `1 regularization for each depth is determined
by the height of the lesion, measured from the co-registered US images. Then we re-calculate
the photon-density wave using the finite-difference method and obtain updated estimations of
the weight matrix and the target absorption distribution. The overall process is pictured in the
flowchart shown in Fig. 1. Given the perturbed photon-density wave measurement usc(r), in step
one, we initialize the wavenumber distribution k(r) and the photon-density wave distribution
u(r) with those of the homogeneous background media. In step two, we use the photon-density
wave distribution to form the weight matrix W. In step three, we reconstruct the absorption
coefficient distribution O(r), and recalculate the photon-density wave u(r) and wave number k(r)
distributions. We then repeat steps two and three until adequate iterations are reached. For the
experiments reported in this article, the iteration stops after 10 iterations.

3. Experimental results

3.1. Accuracy experiments

Phantom experiments were performed with the methods described in Section 2.5. We compared
our reconstruction results with the first order linear Born method developed by us earlier [11].
Figure 2 shows reconstructed images of a high optical contrast ball phantom located at 1.5 cm (top
surface) depth inside the intralipid solution. The 3D absorption distribution is displayed as slices
at different depths, labeled above each column: (a-c) and (d-f) are reconstructions of one 2 cm
diameter ball using non-linear Born (µamax = 0.22cm−1) and linear Born (µamax = 0.18cm−1),
respectively. A more comprehensive analysis of the accuracy of absorption coefficients is
shown in Figure 3. HC and LC stand for high contrast (µa = 0.23cm−1) and low contrast
(µa = 0.11cm−1), respectively. S, M, and L stand for small (1 cm diameter), medium (2 cm),
and large (3 cm), respectively. The color bars in the right upper legend indicate the depth of the
top layer of the phantom target. The average absorption coefficients were estimated with 89.6%
accuracy for high contrast phantoms and 86.1% for low contrast phantoms. The accuracy is
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(b) (c) (d)

(e) (f) (g)

1.5 cm 2.0 cm 2.5 cm

0

0.25

(a)

(cm)(cm)

(cm)

Fig. 2. (a) 3D contour plot of the phantom target. (b-g) Reconstructed absorption maps from
a high contrast 2.0 cm diameter ball phantom placed at 1.5 cm (top surface) depth. The 3D
absorption distribution is displayed as slices at different depths labeled above each column.
(b-d) and (e-g) are reconstructions using linear Born (µamax = 0.18cm−1) and non-linear
Born (µamax = 0.22cm−1), respectively. The target depth distribution is reconstructed more
accurately using the proposed non-linear Born than with the linear Born. The color bar and
the scale bar are used used for all images in this figure.

Depth (cm)

SHC MHC LHC SLC MLC LLC

Ac
cu

ra
cy

 %

Fig. 3. Accuracy of the absorption coefficients reconstructed using non-linear Born for
phantoms submerged at various depths. HC and LC stand for high contrast and low contrast,
respectively. S,M, and L stand for small, medium, and large, respectively. Color bars in the
legend indicate the depth of the top layer of the target.

calculated as µamax /µatruth
× 100%.

Further, we present the convergence analysis of our iterative image reconstruction method
using phantom data shown in Fig. 3. To compare our method with the conjugate gradient
optimization method for linear Born discussed in [31], we normalized the least squares error
(LSE) for each method to the power of the scattered field, ‖y‖2. The mean and standard deviation
of least square errors (LSE) for each method are plotted as a function of iterations in Fig. 4,
where zero initialization is used for both methods. We observe that FISTA converges faster than
the conjugate gradient method. Note that, on average, the objective function converges to a lower
value for non-linear modeling, because more accurate estimation of the photon-density wave
better fits the perturbed photon-density wave measurement usc(r) in Eq. (3), reducing the LSE.
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(a) (b)

Fig. 4. (a) Schematic of the probe used for phantom experiments.(b) Normalized least
squares error of the conjugate gradient method for linear Born (CG linear) and FISTA for
non-linear Born (FISTA non-linear) using phantom data.

(b) (c)

0

0.25

2 cm

sources detectors

(a)

Fig. 5. Reconstructed absorption maps of two 1 cm diameter high contrast ball phantoms
placed at 1.5 cm depth, using linear Born with regularization (µamax = 0.23cm−1) and
non-linear Born (µamax = 0.23cm−1), respectively. Both targets are resolved better using
non-linear Born without regularization. The color bar and the scale bar are used for (b)-(c).

3.2. Two target resolution test

Additionally, we compared the resolution of reconstruction from non-linear Born with that from
linear Born by submerging two 1.0 cm diameter high contrast (µa = 0.23 cm−1) ball shaped
targets separated by 2 cm along the US B-scan direction inside the intralipid solution at 1.5 cm
depth. The reconstruction results using non-linear Born with regularization and linear Born
without regularization are illustrated in Fig. 5. The non-linear Born algorithm with sparse
regularization gives a smaller full width at half maximum (FWHM) value [32], which resolves
the two targets much better than linear Born. Notice that our method does not require employing
of two fine-grid regions, as reported in [33].

3.3. Patient study

We compared non-linear Born with linear Born across 20 patients, 10 with benign lesions and
10 with malignant ones. Patient data were acquired from the lesion side of the breast and
the contralateral mirror position of the healthy breast. The perturbed photo-density wave was
calculated as

Ulesion −Ure f erence

Ure f erence
, (14)
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Depth
(cm)

0

100

2cm

(a)

(c) (d) (e)

(f) (g) (h)

1.5 cm 2.0 cm 2.5 cm

1.5
2.0
2.5

(b)

(i) (j) (k)

(l) (m) (n)

cm

Fig. 6. Reconstructed Hb map of a stage 3 malignant lesion. The 3D Hb distribution is
displayed as slices at different depths, labeled above each column. (a) A co-registered US
image. (b) A center slice of the reconstructed tHb distribution at the orthogonal plane. (c)-(e)
Reconstructed tHb concentration distributions using linear Born without regularization;
maximum tHb = 84.4µM. (f)-(h) Reconstructed tHb concentration distributions using
non-linear Born with regularization; maximum tHb = 95.0µM. (i)-(k) Reconstructed oxyHb
concentration distributions using non-linear Born with regularization; maximum oxyHb
= 65.33µM. (l)-(n) Reconstructed deoxyHb concentration distributions using non-linear
Born with regularization; maximum deoxyHb = 47.88µM. The color bar in (n) is used for
(b)-(n) and the scale bar in (n) is used for (c)-(n).
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0

100

2cm

(c) (d) (e)

(f) (g) (h)

1.5 cm 2.0 cm 2.5 cm

(b)

(i) (j) (k)

(l) (m) (n)

cm

Depth
(cm)
1.5

2.0
2.5

(a)

Fig. 7. Reconstructed Hb map of a benign but proliferative lesion. The 3D Hb distribution is
displayed as slices at different depths, labeled above each column. (a) A co-registered US
image. (b) A center slice of the reconstructed tHb distribution at the orthogonal plane. (c)-(e)
Reconstructed tHb concentration distributions using linear Born without regularization;
maximum tHb = 28.7µM. (f)-(h) Reconstructed tHb concentration distributions using
non-linear Born with regularization; maximum tHb = 29.8µM. (i)-(k) Reconstructed oxyHb
concentration distributions using non-linear Born with regularization; maximum oxyHb
= 8.2µM. (l)-(n) Reconstructed deoxyHb concentration distributions using non-linear Born
with regularization; maximum deoxyHb = 25.3µM. The color bar in (n) is used for (b)-(n)
and the scale bar in (n) is used for (c)-(n).
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Linear w/o 
regularization

Malignant Benign Malignant MalignantBenign Benign
tHb tHb oxyHb oxyHb deoxyHb deoxyHb

Method
Non-linear w/
regularization

p = 0.04

p = 0.04

p = 0.04

p = 0.16

p = 0.18

p = 0.007

Fig. 8. Box plot of maximum tHb,oxyHb, and deoxyHb concentrations obtained from 10
malignant and 10 benign cases using linear Born with regularization and non-linear Born
without regularization, respectively. The p-values from a t-test are labeled

whereUlesion andUre f erence are measurements from the lesion and reference breast, respectively.
In the past, we have compared the use of a contralateral mirror position of a lesion breast and a
symmetric area of the same lesion breast as a healtht breast reference; however, the contralateral
reference is more robust because the tissue curvature and the chest wall depth can be made
symmetrical under the real-time assessment of co-registered ultrasound [28]. Figure 6 shows
a reconstructed tHb,oxyHb, and deoxyHb map of a medium size malignant lesion. The tHb is
calculated from absorption coefficients of four wavelengths, with the extinction coefficients for
deoxygenated and oxygenated hemoglobin given in the literature [34]. The co-registered US
image indicates that the lesion is centered at 2 cm depth from the surface of the breast. The
functional maximum tHb concentration reconstructed with non-linear Born and linear Born are
95.0µM and 84.4µM, respectively. The oxyHb distribution closely follows the tHb distribution,
but is more heterogeneous, with slightly periphery enhancement. The deoxyHb distribution is
more centered in the tumor core. This type of peripheral oxyHb distribution and core deoxyHb
distribution is often seen in larger cancers due to the necrotic tissue in the center and rapid
tumor growth at the peripery [13]. Figure 7 shows reconstruction results on a benign lesion, and
the co-regesitered US image suggests the lesion is located at 2 cm depth. The maximum tHb
concentrations reconstructed with non-linear Born and linear Born are 29.8 µM and 28.7 µM,
respectively. It is interesting to note that this benign lesion had higher deoxyHb than oxyHb, but
both are low. This benign lesion is diagnosed as a proliferate lesion, which may account for the
relatively higher deoxyHb component. Finally, we calculate the tHb,oxyHb, and deoxyHb values
across all 20 cases. Figure 8 presents the statistics of the reconstructed functional maximum
tHb, oxyHb, and deoxyHb values in box plots. Again, we compare non-linear Born with linear
Born. The non-linear Born algorithm improves the average malignant-to-benign lesion contrast
ratio from 2.73 to 3.07, which is a 12.5% improvement. 12.4% improvement. For oxyHb and
deoxyHb, the non-linear Born algorithm does not improve the average malignant-to-benign lesion
ratio than that of linear Born. However, the mean oxyHb of non-linear Born of malignant group
is higher than that of the linear Born (p=0.04), where p is the p-value from the t-test. The mean
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oxyHb of non-linear Born of benign group is statistically the same as the linear Born (p=0.16).
This suggests that non-linear Born statistically improves the linear Born on oxyHb estimate for
malignant group. For deoxyHb, non-linear Born improves deoxyHb than linear Born for both
malignant and bening groups. These interesting premilnary data will be validated with a large
patient pool.

4. Discussion and summary

To summarize, we have experimentally demonstrated and validated that the proposed method
can successfully reconstruct functional images of phantom targets and breast lesions. Phantom
experiments confirm that the non-linear Born method yields better resolution and more accurate
absorption coefficient distributions than the linear Born method. However, non-linear Born also
underestimates the target absorption for a high contrast phantom target located shallower than 1
cm deep, due to the lack of a center source in the probe [35].

In clinical cases, we see that non-linear Born reconstructs higher absorption coefficient value
for large malignant cases than the linear Born method. Based on the results from 20 patients’
data, the average malignant-to-benign lesion contrast is increased from 2.73, using the linear
Born method, to 3.07, which is a 12.5% improvement. For lesions approximately more than
2.0 cm in diameter, the average malignant-to-benign contrast is increased from 2.68 to 3.31,
which is a 23.5% improvement. Our method can achieve more faithful results than the linear
Born method because the photon-density wave attenuation is calculated more accurately with the
iterative update, and the US a priori structure information is incorporated adequately through
sparsity-promoting regularization. Moreover, our method also presents more realistic tumor
absorption distributions.
In the past, we have attempted to simultaneously reconstruct both absorption and scattering

distributions of breast lesions [36]. We had success in phantom data, but these algorithms are not
robust for patient data when applied to a large patient database. In the simultaneous reconstruction,
the distribution of the lesion diffusion coefficient, D(r) = 1/(3 × µ′s(r)), is reconstructed with the
distribution of the lesion absorption, µa(r). However,D(r) is one order of magnitude smaller
than µa(r) and cannot be reconstructed reliably for all patient data. Additionally, simultaneous
reconstruction of both absorption and scattering distributions doubles the unknowns in the image
reconstruction. Since µa(r) is directly related to tumor angiogenesis, we have focused on this
important parameter in our algorithm development.

Although the reconstruction results are improved by the new approach, several issues remain.
First, the Born-type modeling requires a reference medium, and contralateral breast data is
still needed. Second, the numerical updating of the photon-density wave distribution slows the
reconstruction speed. Designing and implementing a GPU-based fast computation method is
needed for clinical translation of this algorithm.
To conclude, the proposed non-linear Born method with US-guided depth regularization

significantly improves the reconstructed target shape, accuracy, and resolution. Our method uses
a non-linear forward model for better photon-density distribution estimation and a fast converging
algorithm for solving the inverse problem, incorporating lesion structure information provided by
the US image. Moreover, with selective modifications, the method is also applicable to MRI- or
X-ray-guided DOT.
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